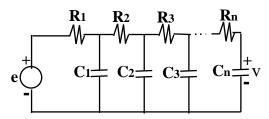
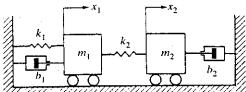
OKLAHOMA STATE UNIVERSITY

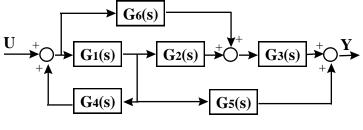
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

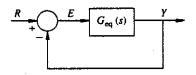


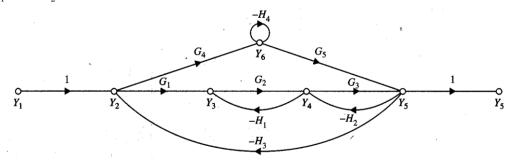
ECEN 3723 Systems I Fall 2008 Final Exam December 9, 2008



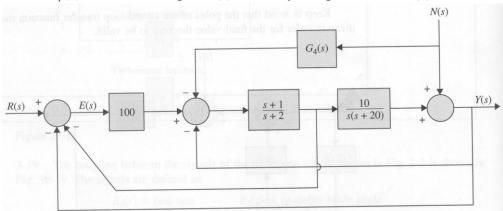
1)	; 2)	; 3)	; 4)	;
Name : _				


Problem 1: Derive the transfer function V(s)/E(s) for the given RC ladder circuit given below where e is the input source and V is the output response (note $R_1 \neq R_2 \neq \cdots \neq R_n$ and $C_1 \neq C_2 \neq \cdots \neq C_n$).


<u>Problem 2</u>: Obtain an *analogous* electrical circuits (using force-current analogy) for the mechanical system shown below.


<u>Problem 3</u>: Using the block diagram reduction technique, find the plant transfer function $G_{eq}(s)$ in the G-configuration (where R (in G Configuration) = U (in the original block diagram)).

G Configuration



Problem 4: Apply the gain formula to the SFG shown below to find the transfer functions of $\frac{Y_5}{Y_1}$ and $\frac{Y_5}{Y_2}$.

Problem 5: The block diagram of a feedback control system is shown below.

- a) Derive the transfer functions of $\frac{Y(s)}{R(s)}\Big|_{N=0}$, $\frac{Y(s)}{N(s)}\Big|_{R=0}$.
- b) The controller with the transfer function $G_4(s)$ is for the reduction of the effect of the noise N(s). Find $G_4(s)$ so that the output Y(s) is totally independent of N(s).

